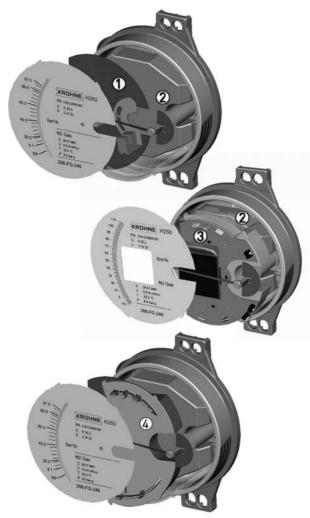


H250 /M40 Technical Datasheet

Variable area flowmeter

- Sturdy construction for high pressure, temperature and media resistance
- Universal Ex concept: Ex i and Ex d
- Modular scalability from mechanical to fieldbus



1 Product features	3
1.1 The standard solution for the process industry1.2 Options and variants1.3 Functional principle	5
2 Technical data	8
2.1 Technical data2.2 Dimensions and weights2.3 Measuring ranges	
3 Installation	25
 3.1 Intended use	26 28 28 28 29 30
4 Electrical connections	31
 4.1 Security information 4.2 Electrical connection indicator M40 4.2.1 Indicator M40 - limit switches 4.2.2 Current output ESK4 4.2.3 Binary inputs/outputs ESK4-T 4.2.4 ESK4-T pulse output 4.2.5 ESK4-T Reset input 4.3 Grounding connections 4.4 Protection category 	
5 Order form	43

1.1 The standard solution for the process industry

The all-metal variable area flowmeter H250 is used for flow measurement of conductive and non-conductive liquids, gases and vapours.

- ① Limit switch
- 2 4...20 mA output
- ③ With LCD, flow counter, electronic limit switches and pulse output
- ④ Fieldbus Profibus PA or Foundation Fieldbus

Highlights

- Simple, low-cost installation: Measure and display without auxiliary power supply
- Universal Ex concept: Ex i and Ex d
- Modular scalability from mechanical to fieldbus
- Any installation position: vertical upward, horizontal, vertical downward
- Robust measuring tube construction for high process temperatures and extreme operating pressures
- Choice of material: Stainless steel, hastelloy[®], titanium, Monel, PTFE/TFM etc.
- Many connection variants: flanged, screwed, clamped, weld-on ends etc.
- Extended measuring range: up to100:1
- High application safety, even with extremely low flows

Industries

Can be used in all industrial sectors, for example:

- Chemicals
- Petrochemicals
- Pharmaceuticals
- Machinery
- Food & Beverage
- Oil & Gas
- Iron, Steel & Metals
- Power plants
- Paper & Pulp
- Water & Wastewater

Applications

- Continuous gas and liquid measurement
- Measurement of non-conductive media
- Industrial burner controlling
- Compressor monitoring
- Dry-run protection of pumps

PRODUCT FEATURES

1.2 Options and variants

FOOD & PHARMA (H250 F)

The only EHEDG-certified variable area flowmeter approved for used in the food and pharmaceuticals industry. Smooth stainless steel surfaces with a surface roughness of $\leq 0.8~\mu m$ or 0,6 μm on parts exposed to the media make it difficult for deposits to take hold and are very easy to clean.

Combined with a design featuring no dead spaces or stagnation zones, microorganisms have no chance to adhere and multiply.

The measuring devices can be cleaned (CIP) and sterilised (SIP) in place. Suitable connections and FDA conforming materials for the food and pharmaceutical industry are available.

PTFE/ceramic liner for aggressive media

All wetted parts are made of PTFE or ceramic and can thus be used for almost all acids and alkalis.

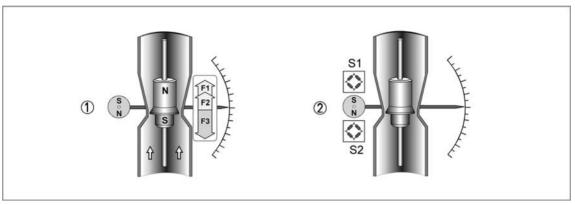
Depending on the choice of material, the measuring device can be used up to a maximum temperature of 70°C / 158°F (PTFE) or 250°C / 482°F (ceramic).

Versions for special installation positions (H250H / H250U)

Variable area flowmeters typically feature a vertically positioned measuring cone through which the medium flows from bottom to top, lifting a float against the weight.

If the installation structure does not permit otherwise, versions for horizontal or inverted (from top to bottom) installation positions are used. The missing reset force of the variable

area float weight is replaced by a spring.


Version with extended measuring range 100:1

The normal measuring range of the H250 measuring device is 10:1. A measuring range of 100:1 can be achieved by inserting a spring which, from a defined float travel, acts as a restoring force in addition to the weight. This eliminates the need for an additional device for minimal volumes.

1.3 Functional principle

The H250 flowmeter operates on the float measuring principle. The measuring unit consists of a metal cone, inside of which a float can move up and down freely. The flow goes from bottom to top. The float changes position so that the lifting force acting on it F1 is in equilibrium with the form drag F2 and its weight F3: F3 = F1 + F2

① Indication principle M40 magnetic coupling

② Magnetic coupling sensors

① For the indicator, the flow-dependent height of the float in the measuring unit is transmitted by means of a magnetic coupling and displayed on a scale.

(2) For a built-in signal converter (ESK4), the flow-dependent height of the float in the measuring unit is detected by the S1 and S2 magnetic field sensors and electronically processed.

Operating principle of H250H and H250U

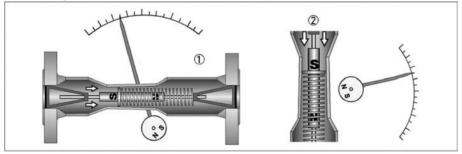


Figure 1-1: Operating principle H250H and H250U

① H250H - horizontal flow direction

② H250U - flow direction from top to bottom

The flowmeter operates based on a modified float measuring principle. The guided float adjusts itself so that the flow force acting on it is in equilibrium with the opposing spring force. The flow-dependent position of the float in the measuring unit is displayed on a scale by means of a magnetic coupling.

2.1 Technical data

- The following data is provided for general applications. If you require data that is more relevant to your specific application, please contact us or your local sales office.
- Additional information (certificates, special tools, software,...) and complete product documentation can be downloaded free of charge from the website (Download Center).

Measuring system

Application range	Flow measurement of liquids, gases and vapors	
Function / Measuring principle Variable area measuring principle		
Measured value		
Primary measured value	Float position	
Secondary measured value	Operating and standard volumetric flow	

Measuring accuracy

Directive	VDI / VDE 3513, sheet 2 (q _G = 50%)
H250 /RR /HC /F	1.6%
H250/C (Ceramic, PTFE) H250H, H250U, H250 (100 : 1)	2.5%

Operating conditions

Temperature	
Max. operating temperature TS	-196+300°C / -321+572°F
Pressure	
Max. operating pressure PS	Depending on the version, up to 400 bar / 5802 psig \oplus
Max. test pressure PT	Pressure equipment directive 97/23/EC or AD 2000-HP30
Min. required operating pressure	2 times greater than pressure loss (see measuring ranges)
Protection category	
M40, M40S, M40R	IP 66/68 acc. to EN60529, NEMA 4/4X/6 acc. to NEMA 250
M40R	IP69K acc. to DIN 40050-9
Float damping during gas measurement	recommended:
DN1525 / 1⁄2"1"	Operating pressure <0.3 bar / 4.4 psig
DN50100 / 2"4"	Operating pressure <0.2 bar / 2.9 psig

Installation conditions acc. to VDI/VDE 3513 Sheet 3

Inlet run	\geq 5 x DN
Outlet run	\geq 3 x DN

higher operating pressures on request

Materials

ltem	Flange / raised face	Measurin g tube	Float	Float stop / guide	Ring orifice
H250/RR stainless steel	CrNi steel 1.4404 massive ①	CrNi steel 1.4404 ①			-
H250/HC Hastelloy [®]	CrNi steel 1.4571 with plated Hastelloy [®] C4 (2.4610) ①	Hastelloy [®] C-22 (2.4602)			-
H250/C Ceramics/PTFE ②	CrNi-Stahl 1.4571 with TFM/PTFE liner ③	PTFE or Al ₂ O ₃ with Al ₂ O ₃ FFKM gasket and PTFE		Al ₂ O ₃	
H250/F - Food		CrNi-Stahl 1.4435			-

① CrNi steel 1.4571 on request, for clamp connection CrNi steel 1.4435

2 DN100/4" only PTFE

③ TFM/PTFE liner (electrically non-conductive)

Other options:

- Special materials on request: e.g. SMO 254, titanium, 1.4435
- Float damping: ceramic or PEEK
- Gasket for devices with female thread as insert: O-ring FPM / FKM

Temperatures

For devices to be used in hazardous areas, special temperature ranges apply. These can be found in the separate instructions

	Material		Product temperature		Ambient temperature	
	Float	Liner	[°C]	[°F]	[°C]	[°F]
H250/RR	stainless steel	stainless steel		-321+572	-40+120	-40+248
H250/RR s	H250/RR screw fitting		-196+300	-321+572	-20+120	-4+248
H250/HC	Hastelloy [®] C4		-196+300	-321+572	-40+120	-40+248
H250/C	PTFE		-196+70	-321+158	-40+70	-40+158
H250/C	Ceramic	PTFE	-196+150	-321+302	-40+70	-40+158
H250/C	Ceramic	TFM / Ceramic	-196+250	-321+482	-40+120	-40+248
H250 H/U	Spring material Stainless Steel 316		-40+100	-40+212	-40+120	-40+248
	Spring material H	Spring material Hastelloy		-40+392	-40+120	-40+248

Temperatures H250/M40 - mechanical indicator without power supply

Ambient temperatures $T_{amb.}$ with electrical components

Version	[°C]	[°F]
ESK4, ESK4-FF, ESK4-PA	-40+70	-40+158
ESK4-T ①	-40+70	-40+158
Limit switches SJ3,5-SN / I7S23,5-N / Reed SPST	-40+70	-40+158
Limit switches SC3,5-N0 / SJ3,5-S1N / SB3,5-E2	-25+70	-13+158

0 Display contrast out of the temperature range 0...60 °C / 32..140°F decreasing.

			Tamb. < +40 °C		Tamb. < +60 °C	
EN	ASME	Version with	Standard	HT	Standard	HT
DN15,	1⁄2", 1"	ESK4, ESK4-FF, ESK4-PA	+200	+300	+180	+300
DN25		ESK4-T	+200	+300	+80	+130
		Limit switch NAMUR	+200	+300	+200	+300
		3-wire limit switch	+200	+300	+130	+295
DN50	2"	ESK4, ESK4-FF, ESK4-PA	+200	+300	+165	+300
		ESK4-T	+180	+300	+75	+100
		Limit switch NAMUR	+200	+300	+200	+300
		3-wire limit switch	+200	+300	+120	+195
DN80,	3", 4"	ESK4, ESK4-FF, ESK4-PA	+200	+300	+150	+250
DN100		ESK4-T	+150	+270	+70	+85
		Limit switch NAMUR	+200	+300	+200	+300
		3-wire limit switch	+190	+300	+110	+160

Temperatures H250/M40 - with electrical components [°C]

Maximum product temperatures H250/M40 - with electrical components [°F]

			T _{amb.} < +104 °F		T _{amb.} < +140 °F ①	
EN	ASME	Version with	Standard	HT	Standard	HT
DN15,	1⁄2", 1"	ESK4, ESK4-FF, ESK4-PA	392	572	356	572
DN25		ESK4-T	392	572	176	266
		Limit switch NAMUR	392	572	392	572
		3-wire limit switch	392	572	266	563
DN 50	2"	ESK4, ESK4-FF, ESK4-PA	392	572	165	572
		ESK4-T	356	572	167	212
		Limit switch NAMUR	392	572	392	572
		3-wire limit switch	392	572	248	383
DN 80,	3", 4"	ESK4, ESK4-FF, ESK4-PA	392	572	302	482
DN100		ESK4-T	302	518	158	185
		Limit switch NAMUR	392	572	392	572
		3-wire limit switch	374	572	230	320

① if there are no heat insulation measures, a heat-resistant cable is necessary (continuous operating temperature of the cable to be used: +100°C)

Abbreviation

HT	High-Temperature version
ESK4	Current output 2-wire 420 mA
ESK4-T	ESK4 with LCD, binary status outputs, digital counter and pulse output.
ESK4-FF	FOUNDATION FIELDBUS interface
ESK4-PA	PROFIBUS PA interface

Cable glands

Cable gland	Material	Cable diameter	
M 20x1.5 Standard	PA	813 mm	0.3150.512"
M20 x 1.5	Nickel-plated brass	1014 mm	0.3940.552"

Limit switches

Terminal connection	2.5 mm ²				
Limit switches	17S23,5-N SC3,5-N0	SJ3,5-SN ①	SJ3,5-S1N ①	SB3,5-E2	Reed
NAMUR (IEC60947-5-6)	Yes	Yes	Yes	no	no
Type of connection	2-wire	2-wire	2-wire	3-wire	2-wire
Switching element function	Normally closed	Normally closed	Normally open	PNP N0 contact	NC SPST
Nominal voltage U ₀	0 8,2 VDC 8,2 VDC 8,2 VDC		8,2 VDC	1030 VDC	max. 32 VDC
Pointer vane not detected	≥3 mA	≥3 mA	≤1 mA	≤ 0.3 VDC	U ₀
Pointer vane detected	≤1 mA	≤1 mA	≥3 mA	U _B - 3 VDC	0 VDC
Continuous current	-	-	-	max. 100 mA	max. 100mA
No load current I ₀	-	-	-	≤ 15 mA	-
Operating cycles	-	-	-	-	100.000

1 safety oriented

Current output ESK4

Terminal connection	2.5 mm ²
Power supply	1430 VDC
Min. power supply for HART®	20 VDC at 250 Ohm load
Measuring signal	4.0020.00 mA = 0100% flow value in 2-wire technology
Power supply influence	<0.1%
Dependence on external resistance	<0.1%
Temperature influence	5 μΑ / Κ
Max. external resistance / load	650 Ohm at 30 VDC
Min. load for HART®	250 Ohm
ESK4 HART [®] configuration	
Manufacturer name (code)	KROHNE Messtechnik (69 = 45h)
Model name	ESK4 (214 = 0xD6)
HART [®] protocol revision	5.9
Device revision	1
Physical layer	FSK
Device category	Transmitter without galvanic isolation

2 TECHNICAL DATA

ESK4 process variable

	Values [%] from full-scale range	Signal output [mA]
Over range	+102.5 (±1%)	20.2420.56
Device error identification	> 106.25	>21.00
Max. current consumption	131.25	25
Multi-drop operation		4.5

ESK4-FF

Physical layer	IEC 61158-2 and FISCO Modell
Communication standard	H1 FOUNDATION Fieldbus protokol
ITK version	5.2
Power supply	Bus supply
Nominal current	16 mA
error current	23 mA
Starting current after 10 ms	< Nominal current

For more details see the supplementary instructions "H250 M40 Foundation Fieldbus"

ESK4-PA

Physical layer	IEC 61158-2 and FISCO Modell
Communication standard	Profibus PA Profil 3.02
PN0 ID	4531 HEX
Power supply	Bus supply
Nominal current	16 mA
error current	23 mA
Starting current after 10 ms	< Nominal current

For more details see the supplementary instructions "H250 M40 Profibus PA"

ESK4-T with LCD, binary inputs and outputs and digital counter

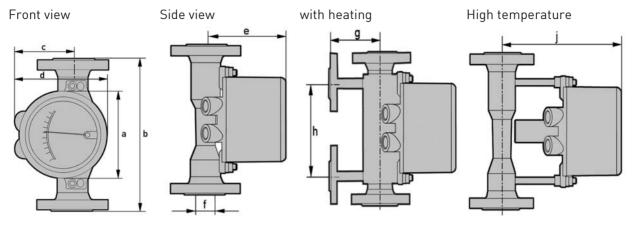
Binary output

Two binary outputs	Galvanically isolated, passive					
Mode	Switch output	NAMUR or transistor (open collector)				
Configurable as	Switch contact or Pulse output	Opener/NO contact or max. 10 pulses / s				
NAMUR switch output						
Power supply	8,2 VDC					
Signal current	 > 3 mA switching value not reached; 	< 1 mA switching value reached				
Switch output transistor (open collector)						
Power supply	Nominal 24 VDC, maximal 30 V	DC				
P _{max}	500 mW					
Continuous current	max. 100 mA					
No load current I ₀	≤ 2mA					

Pulse output

T _{on}	configurable from 50500 ms
T _{off}	depending on flow rate
Pulse value	configurable in flow units e.g. 5 pulses / m ³

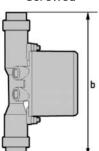
Binary input

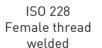

Input	Galvanically isolated
Mode	Reset counters or run/stop
Configurable as	active Hi / active Lo
H- signal	1630 VDC
Internal resistance R _i	typ. 20 kOhm
T _{on} (active)	≥500 ms

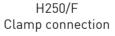
Approvals

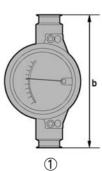
Standard	Screen	Marking
ATEX / IECEx	M40 mechanical	II2GD IIC II3GD IIC
	M40 electrical	III2G Ex ia IIC T6 Gb II2G Ex d IIC T6 Gb II3G Ex nA IIC T6 Gc II2D Ex t IIIC T70°C Db
FM (USA) FM (Canada)	M40	pending
NEPSI	M40	pending

2.2 Dimensions and weights

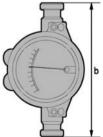

Dimensions H250/M40




	а		a b		d		h	
	[mm]	["]	[mm]	["]	[mm]	["]	[mm]	["]
All nominal sizes	138	5.44	250	9.85	160	6.30	150	5.91
ISO 228			300	11.82				
H250/C - 3"/300 lb			300	11.82				


EN	ASME		с	e		Øf		g		j	
		[mm]	["]								
DN15	1⁄2"	94	3.70	114	4.49	20	0.79	100	3.94	197	7.76
DN25	1"	94	3.70	125	4.92	32	1.26	106	4.18	208	8.19
DN50	2"	107	4.22	139	5.48	65	2.56	120	4.73	222	8.75
DN80	3"	107	4.22	155	6.11	89	3.51	145	5.71	238	9.38
DN100	4"	107	4.22	164	6.46	114	4.49	150	5.91	247	9.73

ISO 228 Female thread screwed



1 Stainless steel 1.4435 - EHEDG tested - wetted surfaces Ra \leq 0.8 / 0.6 μm

Weights

H250			with heating				
Nominal n	nal meter size EN 1092-1		Flange connection		Ermeto connection		
EN	ASME	[kg]	[lb]	[kg]	[lb]	[kg]	[lb]
DN15	1⁄2"	3.5	7.7	5.6	12.6	3.9	8.6
DN25	1"	5	11	7.5	16.5	5.8	12.8
DN50	2"	8.2	18.1	11.2	24.7	9.5	21
DN80	3"	12.2	26.9	14.8	32.6	13.1	28.9
DN100	4"	14	30.9	17.4	38.4	15.7	34.6

			H2	Screw connec.					
Nominal meter size		EN 1	092-1	ASME	150 lb	ASME	300 lb	DIN 1	1864-1
EN	ASME	[kg]	[lb]	[kg]	[lb]	[kg]	[lb]	[kg]	[lb]
DN15	1⁄2"	3.5	7.7	3.2	7.1	3.5	7.7	2	4.4
DN25	1"	5	11	5.2	11.5	6.8	15	3.5	7.7
DN50	2"	10	22.1	10	22.1	11	24.3	5	11
DN80	3"	13	28.7	13	28.7	15	33.1	7.6	16.8
DN100	4"	15	33.1	16	35.3	17	37.5	10.3	22.7

Process connections

	Standard	Conn. dim.	Pressure rating
Flanges (H250/RR /HC /C)	EN 1092-1	DN15150	PN16250
	ASME B16.5	1⁄26"	1502500 lb
	JIS B 2220	15100	1020K
Clamp connections (H250/RR /F)	DIN 32676	DN15100	1016 bar
	ISO 2852	Size 25139.7	1016 bar
Screw connections (H250/RR /HC /F)	DIN 11851	DN15100	2540 bar
	SMS 1146	14"	6 bar / 88.2 psig
Female thread welded (H250/RR /HC)	ISO 228	G1⁄2G2"	≥ 50 bar / 735
	ASME B1.20.1	1⁄22" NPT	psig
Female thread (H250/RR /HC)	ISO 228	G1⁄22"	≤ 50 bar
with insert, FPM gasket and union nut	ASME B1.20.1	1⁄22" NPT	[_] ≤ 735 psig
Thread connection aseptic (H250/F)	DIN 11864 - 1	DN1550	PN40
		DN80100	PN 16
Flange aseptic (H250/F)	DIN 11864 - 2	DN1550	PN40
		DN80DN100	PN 16
Meters (H250/RR /HC) with heating:	·	·	
Heating with flange connection	EN 1092-1	DN15	PN40
	ASME B16.5	1⁄2"	150 lb / RF
Heating pipe connection for Ermeto	-	E12	PN40

Higher pressure ratings and other connections on request

Bolts and tightening torques

For measuring devices with PTFE liner or ceramic liner and PTFE raised face, tighten the flange threads with the following torques:

Nominal sizes EN

	Stud bolts	Tightening torques			
Nominal size acc. to EN 1092-1	Quantity x size	[Nm]	[lb-ft]		
DN15 PN40 ①	4x M12	9.8	7.1		
DN25 PN40 ①	4x M12	21	15		
DN50 PN40 ①	4x M16	57	41		
DN80 PN16 ①	8x M16	47	34		
DN100 PN16 ①	8x M16	67	48		

① standard connections; other connections on request

Nominal size ASME

	Stud	bolts	Tightening torques		
Nominal sizes acc. to ASME B	Quanti	ty x size	[Nm]	[lb-ft]	
16.5	150 lb	300 lb			
½" 150 lb / 300 lb ①	4x 1⁄2"	4x 1⁄2"	5.2	3.8	
1" 150 lb / 300 lb ①	4x 1⁄2"	4x 5/8"	10	7.2	
2" 150 lb / 300 lb 🕦	4x 5/8"	8x 5/8"	41	30	
3" 150 lb / 300 lb 🕦	4x 5/8"	8x ¾"	70	51	
4" 150 lb / 300 lb ①	8x 5/8"	8x ¾"	50	36	

1 standard connections; other connections on request

Мах	. process ter	nperature 🕨	+70°C (+	158°F)	+150°C (*302°F) +250°C (+482°			+482°F)
				Mi	n. operat	ing press	ure	
Nominal meter size	Float	Lin er	[mbar abs.]	[psia]	[mbar abs.]	[psia]	[mbar abs.]	[psia]
DN15DN100	PTFE	PTFE	100	1.45	-	-	-	
DN15DN80	Ceramic	PTFE	100	1.45	250	3.63	-	-
DN15DN80	Ceramic	TFM / Ceramic	100	1.45	100	1.45	100	1.45

Pressure tightness (vacuum) H250/C

2.3 Measuring ranges

H250/RR - Stainless Steel, H250/HC - Hastelloy $^{\ensuremath{\mathbb{R}}}$

Measuring span:	10 : 1			
Flow values:	Values = 100%	Water 20°C / 68°F	Air: 20°C [68°F], 1,013 bar abs. [14,7 psia]	

			Water	•		Air	•		Max. pressure loss		
Float	•	TIV	CIV	DIV	TIV Alu	TIV	DIV	TIV Alu	TIV	CIV	DIV
Nominal meter size	Cone		[l/h]			[Nm ³	/h]		[mb	oar]	
DN15, ½"	K 15.1	18	25	-	0.42	0.65	-	12	21	26	-
	K 15.2	30	40	-	0.7	1	-	12	21	26	-
	K 15.3	55	63	-	1	1.5	-	12	21	26	-
	K 15.4	80	100	-	1.7	2.2	-	12	21	26	-
	K 15.5	120	160	-	2.5	3.6	-	12	21	26	-
	K 15.6	200	250	-	4.2	5.5	-	12	21	26	-
	K 15.7	350	400	700	6.7	10	18 ①	12	21	28	38
	K 15.8	500	630	1000	10	14	28 ②	13	22	32	50
	K 15.8	-	-	1600 ③	-	-	50 ③	-	-	-	85
DN25, 1"	K 25.1	480	630	1000	9.5	14	-	11	24	32	72
	K 25.2	820	1000	1600	15	23	-	11	24	33	74
	K 25.3	1200	1600	2500	22	35	-	11	25	34	75
	K 25.4	1700	2500	4000	37	50	110 ②	12	26	38	78
	K 25.5	3200	4000	6300	62	95	180 ②	13	30	45	103 ④
DN50, 2"	K 55.1	2700	6300	8400	58	80	230 ②	8	13	74	60
	K 55.2	3600	10000	14000	77	110	350 ②	8	13	77	69
	K 55.3	5100	16000	25000	110	150	700 ②	9	13	84	104
DN80, 3"	K 85.1	12000	25000	37000	245	350	1000 ②	8	16	68	95
	K 85.2	16000	40000	64000	280	400	1800 ②	9	16	89	125
DN100, 4"	K105.1	19000	63000	100 000	-	550	2800 ②	-	-	120	220

① P >0.5 bar

② P >0,5 bar

③ with TR float

4 300 mbar with damping (gas measurement)

The operating pressure should be at least double the pressure loss for liquids and five times for gases. The indicated pressure losses are valid for water and air at maximum flow rate. Other flow ranges on request. Conversion of other media or operating data is performed using the calculation method in accordance with VDI /VDE Directive 3513.

Reference condition for gas measurements:

Flow measurements for gases are attributed to

Nl/h or Nm³/h: Volume current in standard state 0°C - 1.013 bar abs. (DIN 1343)

2 TECHNICAL DATA

H250/RR - Stainless Steel, H250/HC - Hastelloy®

Measuring span:	10 : 1		
Flow values:	Values = 100%	Water 20°C / 68°F	Air: 20°C [68°F], 1,013 bar abs. [14,7 psia]

			Water			Air			Max. pres	sure loss	
Float	•	TIV	CIV	DIV	TIV Alu	TIV	DIV	TIV Alu	TIV	CIV	DIV
Nominal meter size	Cone		[GPH]			[SCFM]		[ps	ig]	
DN15, ½"	K 15.1	4.76	6.60	-	0.26	0.40	-	0.18	0.31	0.38	-
	K 15.2	7.93	10.6	-	0.43	0.62	-	0.18	0.31	0.38	-
	K 15.3	14.5	16.6	-	0.62	0.93	-	0.18	0.31	0.38	-
	K 15.4	21.1	26.4	-	1.05	1.36	-	0.18	0.31	0.38	-
	K 15.5	31.7	42.3	-	1.55	2.23	-	0.18	0.31	0.38	-
	K 15.6	52.8	66.0	-	2.60	3.41	-	0.18	0.31	0.38	-
	K 15.7	92.5	106	185	4.15	6.20	11.2 ①	0.18	0.31	0.41	0.56
	K 15.8	132	166	264	6.20	8.68	17,4 ②	0.19	0.32	0.47	0.74
	K 15.8	-	-	423 ③	-	-	31.0 ③	-	-	-	1.25
DN25, 1"	K 25.1	127	166	264	5.89	8.68	-	0.16	0.35	0.47	1.06
	K 25.2	217	264	423	9.30	14.3	-	0.16	0.35	0.49	1.09
	K 25.3	317	423	660	13.6	21.7	-	0.16	0.37	0.50	1.10
	K 25.4	449	660	1057	22.9	31.0	68,2 (Ž	0.18	0.38	0.56	1.15
	K 25.5	845	1057	1664	38.4	58.9	111 ①	0.19	0.44	0.66	1.51 ④
DN50 2"	K 55.1	713	1664	2219	36.0	49.6	143 ②	0.12	0.19	1.09	0.88
	K 55.2	951	2642	3698	47.7	68.2	217 ②	0.12	0.19	1.13	1.01
	K 55.3	1347	4227	6604	68.2	93.0	434 ②	0.13	0.19	1.23	1.53
DN80 3"	K 85.1	3170	6604	9774	152	217	620 ②	0.12	0.24	1.00	1.40
	K 85.2	4227	10567	16907	174	248	1116 ②	0.13	0.24	1.31	1.84
DN100 4"	K105.1	5019	16643	26418	-	341	1736 ②	-		1.76	3.23

① P >7.4 psig

② P >7,4 psig

③ with TR float

(4) 4.4 psig with damping (gas measurement)

The operating pressure should be at least double the pressure loss for liquids and five times for gases. The indicated pressure losses are valid for water and air at maximum flow rate. Other flow ranges on request. Conversion of other media or operating data is performed using the calculation method in accordance with VDI /VDE Directive 3513.

Reference condition during gas measurements: Flow measurements for gases are attributed to SCFM or SCFH: Volume current in standard state 15°C - 1.013 bar abs. (ISO 13443)

H250/C - Ceramic/PTFE

Measuring span:	10 : 1		
Flow values:	Values = 100%	Water 20°C / 68°F	Air: 20°C [68°F], 1,013 bar abs. [14,7 psia]

			Fl	ow		Max. pressure loss			
		Wa	ater	А	ir	Water Air			ir
Line Floa		PTFE	Ceramic	PTFE	Ceramic	PTFE	Ceramic	PTFE	Ceramic
Nominal meter size	Cone	[l/h]		[Nm	1 ³ /h]		[mbar]		
DN15, ½"	E 17.2	25	30	0,7	-	65	62	65	62
	E 17.3	40	50	1,1	1.8	66	64	66	64
	E 17.4	63	70	1,8	2.4	66	66	66	66
	E 17.5	100	130	2,8	4	68	68	68	68
	E 17.6	160	200	4,8	6.5	72	70	72	70
	E 17.7	250	250	7	9	86	72	86	72
	E 17.8	400	-	10	-	111	-	111	-
DN25, 1"	E 27.1	630	500	16	18	70	55	70	55
	E 27.2	1000	700	30	22	80	60	80	60
	E 27.3	1600	1100	45	30	108	70	108	70
	E 27.4	2500	1600	70	50	158	82	158	82
	E 27.5	4000 ①	2500	120	75	290	100	194	100
DN50, 2"	E 57.1	4000	4500	110	140	81	70	81	70
	E 57.2	6300	6300	180	200	110	80	110	80
	E 57.3	10000	11000	250	350	170	110	170	110
	E 57.4	16000 ①	-	-	-	284	-	-	-
DN80, 3"	E 87.1	16000	16000	-	-	81	70	-	-
	E 87.2	25000	25000	-	-	95	85	-	-
	E 87.3	40000 ①	-	-	-	243	-	-	-
DN100, 4"	E 107.1	40000	-	-	-	100	-	-	-
	E 107.2	60000 ①	-	-	-	225	-	-	-

1 special float

The operating pressure should be at least double the pressure loss for liquids and five times for gases. The indicated pressure losses are valid for water and air at maximum flow rate. Other flow ranges on request. Conversion of other media or operating data is performed using the calculation method in accordance with VDI /VDE Directive 3513.

Reference condition during gas measurements:

Flow measurements for gases are attributed to Nl/h or Nm³/h: Volume current in standard state 0°C - 1.013 bar abs. (DIN 1343)

2 TECHNICAL DATA

H250/C - Ceramic/PTFE

Measuring span:	10 : 1		
Flow values:	Values = 100%	Water 20°C / 68°F	Air: 20°C [68°F], 1,013 bar abs. [14,7 psia]

			Fl	ow			Max. pres	ssure loss	
		Wa	ater	Δ	\ir	Water		Air	
Line	er / Float 🕨	PTFE	Ceramic	PTFE	Ceramic	PTFE	Ceramic	PTFE	Ceramic
Nominal meter size	Cone	[G	PH]	[50	FM]		[ps	sig]	
DN15, ½"	E 17.2	6.60	7.93		-	0,94	0,90	0,94	0,90
	E 17.3	10.6	13.2		1.12	0,96	0,93	0,96	0,93
	E 17.4	16.6	18.5		1.49	0,96	0,96	0,96	0,96
	E 17.5	26.4	34.3		2.48	0,99	0,99	0,99	0,99
	E 17.6	42.3	52.8		4.03	1,04	1,02	1,02	1,02
	E 17.7	66.0	66.0		5.58	1,25	1,04	1,25	1,04
	E 17.8	106	-		-	1,61	-	1,61	-
DN25, 1"	E 27.1	166	132		11.2	1,02	0,80	1,02	0,80
	E 27.2	264	185		13.6	1,16	0,87	1,16	0,87
	E 27.3	423	291		18.6	1,57	1,02	1,57	1,02
	E 27.4	660	423		31.0	2,29	1,19	2,29	1,19
	E 27.5	1056 ①	660		46.5	4,21	1,45	2,81	1,45
DN50, 2"	E 57.1	1057	1189		86.8	1,18	1,02	1,18	1,02
	E 57.2	1664	1664		124	1,60	1,16	1,60	1,16
	E 57.3	2642	2906		217	2,47	1,60	2,47	1,60
	E 57.4	4226 ①	-		-	4,12	-	-	-
DN80, 3"	E 87.1	4227	4227		-	1,18	1,02	-	-
	E 87.2	6604	6604		-	1,38	1,23		-
	E 87.3	10567 ①	-		-	3,55	-		-
DN100, 4"	E 107.1	10567	-		-	1,45	-		-
	E 107.2	15850 ①	-		-	3,29	-		-

1 special float

The operating pressure should be at least double the pressure loss for liquids and five times for gases. The indicated pressure losses are valid for water and air at maximum flow rate. Other flow ranges on request. Conversion of other media or operating data is performed using the calculation method in accordance with VDI /VDE Directive 3513.

Reference condition for gas measurements:

Flow measurements for gases are attributed to SCFM or SCFH: Volume current in standard state 15°C - 1.013 bar abs. (ISO 13443)

H250H - Horizontal installation position

Measuring spa	an:	10 : 1						
Flow values:		Values = 100%	Water 20°	C / 68°F	Air: 20°C	[68°F], 1,013 bar abs.	[14,7 psia]	
EN	ASM	E	Cone	Water [l/h]		Air [Nm ³ /h]	Pressure loss [mbar]	
DN15		1/2	K 15.1		70	1.8	195	
			K 15.2		120	3	204	
			K 15.3		180	4.5	19	
			K 15.4		280	7.5	22	
			K 15.5		450	12	25	
			K 15.6		700	18	32	
			K 15.7		1200	30	59	
			K 15.8		1600	40	95	
			K 15.8		2400	60	160	
DN25		1"	K 25.1		1300	35	12	
			K 25.2		2000	50	10	
			K 25.3		3000	80	11	
			K 25.4		5000	130	14	
			K 25.5		8500	220	21	
			K 25.5		10000	260	33	
DN50		2"	K 55.1		10000	260	24	
			K 55.2		16000	420	23	
			K 55.3		22000	580	22	
			K 55.3		34000	900	42	
DN80		3"	K 85.1		25000	650	13	
			K 85.2		35000	950	13	
			K 85.2		60000	1600	29	
DN100		4"	K 105.1		80000	2200	25	
			K 105.1		120000	3200	34	

The operating pressure should be at least double the pressure loss for liquids and five times for gases. The indicated pressure losses are valid for water and air at maximum flow rate. Other flow ranges on request. Conversion of other media or operating data is performed using the calculation method in accordance with VDI /VDE Directive 3513.

Reference condition for gas measurements:

Flow measurements for gases are attributed to Nl/h or Nm³/h: Volume current in standard state 0°C - 1.013 bar abs. (DIN 1343)

2 TECHNICAL DATA

H250H - Horizontal installation position

Measuring spa	in:	10 : 1						
Flow values:		Values = 100%	Water 20	°C / 68°F	Air: 20°	°C [68°F], 1,013 bar abs	s. [14,7 psia]	
EN	ASM	IE Cone		Wasser [GPH]		Luft [SCFM]	Pressure loss [psig]	
DN15		1/2"	K 15.1		18.5	1.12	2.87	
			K 15.2		31.7	1.86	3.0	
			K 15.3		47.6	2.79	2.8	
			K 15.4		74.0	4.65	3.3	
			K 15.5		119	7.44	3.6	
			K 15.6		185	11.2	4.7	
			K 15.7		317	18.6	8.6	
			K 15.8		423	24.8	14.	
			K 15.8		634	37.2	23	
DN25		1"	K 25.1		343	21.7	1.7	
			K 25.2		528	31.0	1.5	
			K 25.3		793	49.6	1.7	
			K 25.4		1321	80.6	2.1	
			K 25.5		2245	136	3.1	
			K 25.5		2642	161	4.9	
DN50		2"	K 55.1		2642	161	3.5	
			K 55.2		4227	260	3.3	
			K 55.3		5812	360	3.2	
			K 55.3		8982	558	6.1	
DN80		3"	K 85.1		6604	403	1.9	
			K 85.2		9246	589	1.9	
			K 85.2		15851	992	4.2	
DN100		4"	K 105.1		21134	1364	3.6	
			K 105.1		31701	1984	5.0	

The operating pressure should be at least double the pressure loss for liquids and five times for gases. The indicated pressure losses are valid for water and air at maximum flow rate. Other flow ranges on request. Conversion of other media or operating data is performed using the calculation method in accordance with VDI /VDE Directive 3513.

Reference condition for gas measurements:

Flow measurements for gases are attributed to SCFM or SCFH: Volume current in standard state 15°C - 1.013 bar abs. (ISO 13443)

H250U - Vertical installation position

Measuring span:	10 : 1	10 : 1						
Flow values:	Values = 100%	Water 20°C / 68°F	Air: 20°C [68°F], 1,013 bar abs. [14,7 psia]					
Flow direction	vertical downwa	vertical downwards						

EN	ASME	Cone	Water [l/h]	Air [Nm ³ /h]	Pressure loss [mbar]
DN15	1/2"	K 15.1	65	1.6	175
		K 15.2	110	2.5	178
		K 15.3	170	4	180
		K 15.4	260	6	200
		K 15.5	420	10	220
		K 15.6	650	16	290
		K 15.7	1100	28	520
		K 15.8	1500	40	840
DN25	1"	K 25.1	1150	30	97
		K 25.2	1800	45	85
		K 25.3	2700	70	92
		K 25.4	4500	120	115
		K 25.5	7600	200	172
DN50	2"	K 55.1	9000	240	220
		K 55.2	15000	400	230
		K 55.3	21000	550	240

The operating pressure should be at least double the pressure loss for liquids and five times for gases. The indicated pressure losses are valid for water and air at maximum flow rate. Other flow ranges on request. Conversion of other media or operating data is performed using the calculation method in accordance with VDI /VDE Directive 3513.

Reference condition for gas measurements:

Flow measurements for gases are attributed to Nl/h or Nm³/h: Volume current in standard state 0°C - 1.013 bar abs. (DIN 1343)

2 TECHNICAL DATA

H250U - Vertical installation position

Measuring span:	10 : 1	10 : 1						
Flow values:	Values = 100%	Water 20°C / 68°F	Air: 20°C [68°F], 1,013 bar abs. [14,7 psia]					
Flow direction	vertical downwa	vertical downwards						

EN	ASME	Cone	Wasser [GPH]	Luft [SCFM]	Pressure loss [psig]
DN15	1⁄2"	K 15.1	17.2	0.99	2.57
		K 15.2	29.1	1.55	2.62
		K 15.3	44.9	2.48	2.65
		K 15.4	68.7	3.72	2.94
		K 15.5	111	6.20	3.23
		K 15.6	172	9.92	4.26
		K 15.7	291	17.4	7.64
		K 15.8	396	24.8	12.3
DN25	1"	K 25.1	304	18.6	1.42
		K 25.2	476	27.9	1.25
		K 25.3	713	43.4	1.35
		K 25.4	1189	74.4	1.69
		K 25.5	2008	124	2.53
DN50	2"	K 55.1	2378	149	3.23
		K 55.2	3963	248	3.38
		K 55.3	5548	341	3.53

The operating pressure should be at least double the pressure loss for liquids and five times for gases. The indicated pressure losses are valid for water and air at maximum flow rate. Other flow ranges on request. Conversion of other media or operating data is performed using the calculation method in accordance with VDI /VDE Directive 3513.

Reference condition for gas measurements:

Flow measurements for gases are attributed to SCFM or SCFH: Volume current in standard state 15°C - 1.013 bar abs. (ISO 13443)

3.1 Intended use

Responsibility for the use of the measuring devices with regard to suitability, intended use and corrosion resistance of the used materials against the measured fluid lies solely with the operator.

The manufacturer is not liable for any damage resulting from improper use or use for other than the intended purpose.

The variable area flowmeters are suitable for measuring clean gases, vapours and liquids.

Intended use:

- The product may not contain any ferromagnetic particles or solids. It may be necessary to install magnetic filters or mechanical filters.
- The product must be sufficiently liquid and free of deposits.
- Avoid pressure surges and pulsing flows.
- Open valves slowly. Do not use solenoid valves.

Use suitable measures to eliminate compression vibrations during gas measurements:

- Short pipeline lengths to next restriction
- Nominal pipe size not greater than nominal device size
- Use of floats with damping
- Increase in operating pressure (while taking into account the resulting change in density and thus change in scale)

Observe installation conditions according to VDI/VDE 3513-3

For devices used in hazardous areas, additional safety notes apply; please refer to the Ex documentation.

Responsibility for the use of the measurement devices with regard to suitability, intended use and corrosion resistance of the used materials against the measured fluid lies solely with the operator.

The manufacturer is not liable for any damage resulting from improper use or use for other than the intended purpose.

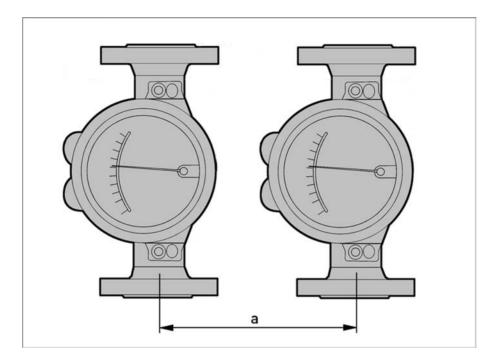
Do not use any abrasive media containing solid particles or highly viscous media.

3.2 Installation conditions

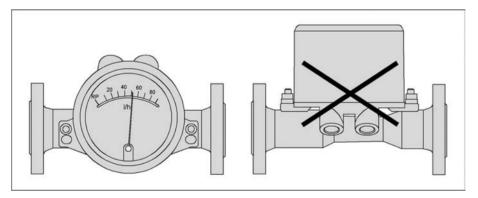
When installing the device in the piping, the following points must be observed:

• The variable area flowmeter must be installed vertically (measuring principle). Flow direction from bottom to top. For installation recommendations please refer also to VDI/VDE 3513 Sheet 3.

H250Hs are installed horizontally and H250U devices are installed vertically with the flow direction from top to bottom.


- A straight unimpeded inlet run of ≥ 5x DN upstream of the device and a straight outlet run of ≥ 3x DN downstream of the device are recommended.
- Screws, bolts and gaskets are to be provided by the customer and must be selected in accordance with the pressure rating of the connection or the operating pressure.
- The inside diameter of the flange deviates from the standard dimensions. Flange seal standard DIN 2690 can be applied without any limitation.
- Align the gaskets. Tighten the nuts with the tightening torques of the appropriate pressure rating.

For devices with PTFE liner or ceramic liner and PTFE raised faces, see chapter "Tightening torques".


- Control devices are to be positioned downstream of the measuring device.
- Shutoff devices are preferably to be positioned upstream of the measuring device.
- Before connecting, blow or flush out the pipes leading to the device.
- *Pipes for gas flow need to be dried before the device is installed.*
- Use connectors suitable for the particular device version.
- Align the pipes centrically with the connection bores on the measuring device so they are free of stresses.
- If necessary, the piping has to be supported to reduce the vibrations transmitted to the measuring device.
- Do not lay signal cables directly next to cables for the power supply.

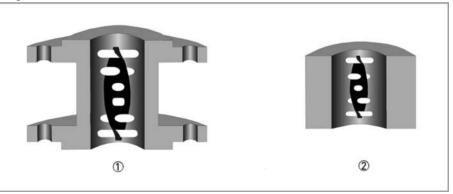
Minimum distance between the divices

If several instruments are installed side by side, a minimum distance a > 300mm between these divices is required.

Take special note of the installation position for the H250H with horizontal flow direction:

In order to comply with thermal parameters and measuring accuracy, H250H flowmeters for horizontal installation are to be installed in the pipeline so that the display is located on the side of the measuring tube. The maximum medium and ambient temperatures indicated as well as the measuring accuracy are based on lateral installation of the display.

3.2.1 Tightening torques

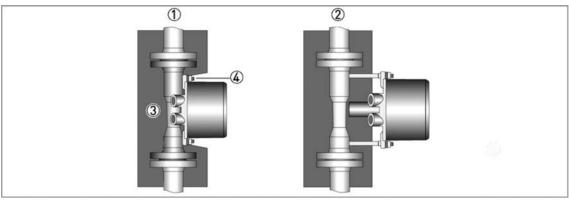

For measuring devices with PTFE liner or ceramic liner and PTFE raised face, tighten the flange threads with the following torques:

Nom	Nominal size according to Stud bolts				Max. torque					
EN 1	EN 1092-1 ASME B 16.5		EN	EN ASME		EN 1092-1		ASME 150 lb		
DN	PN	inch	lb		150 lb	300 lb	Nm	ft*lbf	Nm	ft*lbf
15	40	1⁄2"	150/300	4x M12	4x ½"	4x ½"	9.8	7.1	5.2	3.8
25	40	1"	150/300	4x M12	4x ½"	4x 5/8"	21	15	10	7.2
50	40	2"	150/300	4x M16	4x 5/8"	8x 5/8"	57	41	41	30
80	16	3"	150/300	8x M16	4x 5/8"	8x ¾"	47	34	70	51
100	16	4"	150/300	8x M16	8x 5/8"	8x ¾"	67	48	50	36

3.2.2 Magnetic filters

The use of magnetic filters is recommended when the medium contains particles which can be influenced magnetically. The magnetic filter is to be installed in the flow direction upstream of the flowmeter. Bar magnets are positioned helically in the filter to provide optimal efficiency at low pressure loss. All of the magnets are coated individually with PTFE to protect against corrosion. Material: 1.4571

Magnetic filters



① Type F - fitting part with flange - overall length 100 mm

2 Type FS - fitting part without flange - overall length 50 mm

3.2.3 Heat insulation

The indicator housing may not be heat-insulated. The heat insulation \mathfrak{B} may only reach as far as the housing fastening \mathfrak{A} .

1 Standard indicator M40

2 $\mbox{ Indicator with HT extension}$

The heat insulation \hat{T} may only reach to the rear of the housing \hat{Q} . The area of the cable entries \hat{J} must be freely accessible.

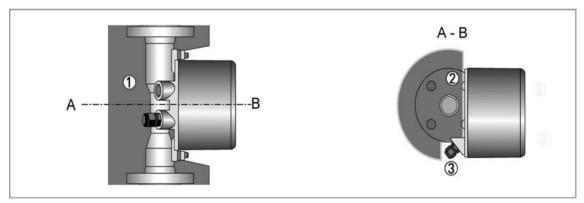
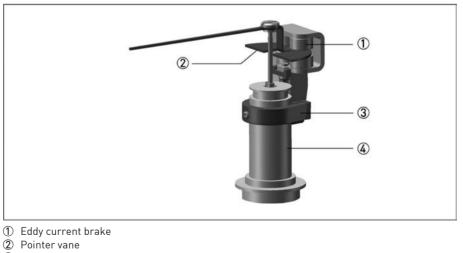


Figure 3-1: Insulation - cross section

3.2.4 Float damping

Float damping is characterised by high standstill times and self-centering. The damping sleeve is made of high performance ceramic or PEEK, depending on the medium and the application. Float damping can also be retrofitted for the user (see Service).


Use of damping

- Generally when CIV and DIV floats are used for gas measurement.
- For TIV floats (H250/RR and H250/HC only) with an operating primary pressure:

Nominal	size acc. to	Operating primary pressure			
EN 1092-1	EN 1092-1 ASME B16.5		[psig]		
DN 50	1⁄2"	≤0.3	≤4.4		
DN25	1"	≤0.3	≤4.4		
DN50	2"	≤0.2	≤2.9		
DN80	3"	≤0.2	≤2.9		
DN 100	4"	≤0.2	≤2.9		

3.2.5 Pointer damping

In principle, the indicating element with its magnetic system contains indicator damping. An additional eddy current brake is advantageous in the event of fluctuating or pulsing flows. The magnets on the eddy current brake surround the pointer vane without touching it, damping its movement. The result is a much steadier pointer position, without distorting the measured value. A turnbuckle ensures a proper fit. The eddy current brake can be retrofitted during operation without recalibrating (see Service).

④ Pointer cylinder

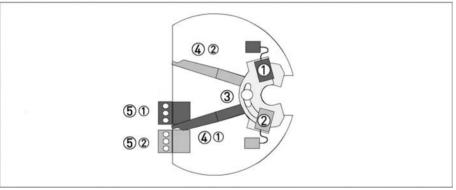
4.1 Security information

All work on the electrical connections may only be carried out with the power disconnected. Take note of the voltage data on the nameplate!

Observe the national regulations for electrical installations!

For devices used in hazardous areas, additional safety notes apply; please refer to the Ex documentation.

Observe without fail the local occupational health and safety regulations. Any work done on the electrical components of the measuring device may only be carried out by properly trained specialists.


Look at the device nameplate to ensure that the device is delivered according to your order. Check for the correct supply voltage printed on the nameplate.

4.2 Electrical connection indicator M40

4.2.1 Indicator M40 - limit switches

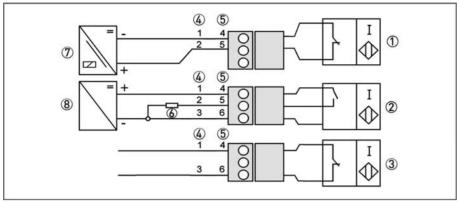
The M40 indicator can be fitted with a maximum of two limit switches. The limit switch works as a slot sensor which is inductively activated via the semi-circular metal vane of the pointer. The switching points are set using the contact pointer. The position of the contact pointer is displayed on the scale.

Limit switch module

① Min. contact

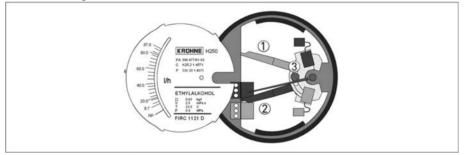
Max. contact

③ Locking screw


- (4) Maximum pointer
- (5) Connection terminal

The connecting terminals have a pluggable design and can be removed in order to connect the cables. The built-in limit switch types are shown on the indicator.

Electrical connection of the limit switches

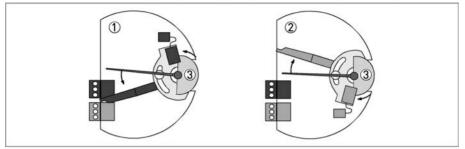

Contact	MIN			МАХ		
Terminal no.	1	2	3	4	5	6
Connection 2-wire NAMUR	-	+		-	+	
Connection 3-wire	+		-	+		-
Connection Reed SPST	+		-	+		-

Limit switch connection terminals

- ① 2-wire limit switch NAMUR
- 3-wire limit switch
- ③ Limit switch Reed SPST
- 4 Terminal connection min contact
- (5) Terminal connection max contact
- (6) 3-wire load
- ⑦ NAMUR isolated switching amplifier
- (8) 3-wire power supply

Limit setting

Figure 4-1: Limit switch settings


- ① Contact pointer MAX
- 2 Contact pointer MIN
- ③ Locking screw

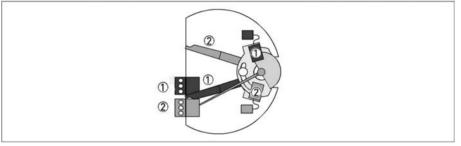
Setting is carried out directly via contact pointers ① and ②:

- Slide the scale away
- Loosen the locking screw ③ slightly
- Slide the scale back to the latching point
- Set contact pointers ① and ② to the desired switching point

After setting has been carried out: Fix the contact pointers with the locking screw ③.

Switch contact definition

① MIN contact


MAX contact

 $\bar{3}$ Pointer vane with switching vane

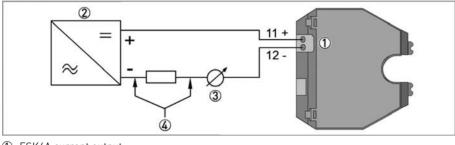
If the measuring pointer vane goes into the slot an alarm is triggered. If the pointer vane is outside the slot sensor, a wire break in a NAMUR contact also triggers the alarm.

The 3-wire limit switch does not have any wire break detection.

Definition MinMin - MaxMax

① MIN 2 contact or MAX 1 contact

② MIN 1 contact or MAX 2 contact

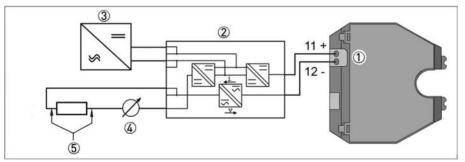

Current consumption in the position shown:

Contact	Туре	current
MIN 1	NAMUR	≤ 1 mA
MIN 2	NAMUR	≤ 1 mA
MAX 1	NAMUR	≥ 3 mA
MAX 2	NAMUR	≥ 3 mA

4.2.2 Current output ESK4

The connecting terminals of the ESK4 have a pluggable design and can be removed in order to connect the cables.

ESK4 connection



① ESK4A current output

- 2 Power supply 14...30 VDC3 Measuring signal 4...20 mA
- ④ External load, HART[®] communication

Power supply M40 with electrical isolation

Wiring must be planned with great care when it comes to connecting other devices such as evaluation units or process control. Internal connections in these devices (e.g. GND with PE, mass loops) may lead to non-permitted voltage potentials which could impair the function of the converter itself or that of a device connected to it. In such cases a protected extra-low voltage (PELV) is recommended.

- ① Terminal connection
- ② Converter supply isolator with electrical isolation
- ③ Power supply (see supply isolator information)
- ④ Measuring signal 4...20 mA
- (5) External load, HART[®] communication

Power supply

The feed voltage must be between 14 VDC and 30 VDC. This is based on the total resistance of the measuring loop. To determine this, add up the resistances of each component in the measuring loop (not including the level meter).

The required supply voltage can be calculated using the formula below:

 $U_{ext} = R_1 \cdot 24 \text{ mA} + 14 \text{ V}$

where $U_{ext.}$ = the minimum supply voltage and R_L = the total measuring loop resistance.

The power supply has to be able to supply a minimum of 30 mA.

HART[®] communication

When HART[®] communication is carried out with the ESK4, the analogue measured data transmission (4...20 mA) is not impaired in any way.

Exception for multidrop operation. In multidrop mode, a maximum of 15 devices with HART[®] function can be operated in parallel, whereby their current outputs are switched inactive (I approx. 4.5 mA per device).

Load for HART[®] communication

A load of at least 230 Ohm is required for HART[®] communication.

The maximum load resistance is calculated as follows:

$$R_L = \frac{U_{ext.} - 14V}{24mA}$$

Use a twisted two-core cable to prevent electrical interference from impeding the DC output signal.

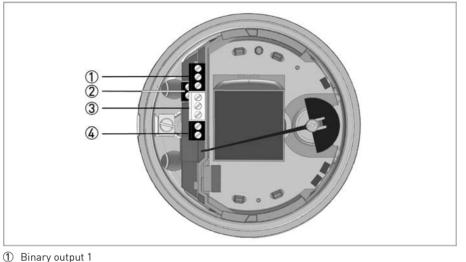
In some cases a shielded cable may be necessary. The cable shield may only be earthed (grounded) at one place (on the power supply unit).

Configuration

The ESK can be configured via HART[®] communication. DD (Device Descriptions) for AMS 10x, AMS 11x and PDM 6.0 as well as a DTM (Device Type Manager) for PACTwareTM 3.0.2.28(3.0 SP5), 3.6.0.3(3.6 SP2) and 4.0.0.6 are available for configuration. They can be downloaded free of charge from our website.

The current flow rate can be transmitted using the integrated HART[®] communication. A flow counter can be configured. Two limit values can be monitored. The limit values are assigned either to flow values or to the counter overflow.

Self monitoring - Diagnostics


During both start-up and operation, a wide variety of diagnostic functions are performed cyclically in the ESK4, in order to guarantee function reliability. When an error is detected, a failure signal (high) is activated (current > 21 mA, typically 22 mA) via the analog output. More detailed information can also be obtained via HART[®](CMD#48). The failure signal is not activated in the event of information and warnings.

Diagnostic functions (Monitoring):

- Plausibility of FRAM data
- Plausibility of ROM data
- Working range of internal reference voltages
- Signal detection of the measuring range of the internal sensors
- Temperature compensation of the internal sensors
- Calibration based on the application
- Plausibility of counting value
- Plausibility of physical unit, system and selected unit

4.2.3 Binary inputs/outputs ESK4-T

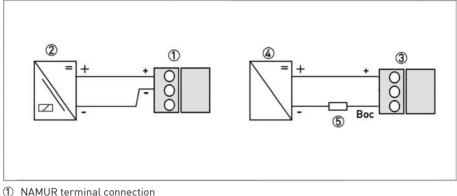
Once the housing cover has been unscrewed, the scale can be removed. The connection terminals feature a pluggable design and can be removed to connect the cables.

② Power supply / durrent output ESK4

3 Binary output 2

G Binary outputG Binary input

The binary inputs/outputs are electrically isolated from each other and from the ESK4 current output.


The binary inputs/outputs can only be operated if the power supply is applied to ESK4 terminals 11+ and 12-. The binary inputs/outputs come inactive by default and must thus be activated prior to first use (see Section 6.6 Menu ESK4-T)

Connection binary outputs

In accordance with the desired signal transmission, select one of the following connection types for binary outputs B1 and B2:

- NAMUR (DC interface in accordance with EN 60947-5-6)
- Transistor output (passive, open collector)

Binary output	B1			B2		
Terminal no.	1	1 2 3			5	6
Connection NAMUR	+	-		+	-	
Connection transistor output	+		B _{OC}	+		B _{OC}

- Isolated switching amplifier
- ③ Terminal connection transistor output
- ④ Power supply U_{ext.}
- ⑤ Load R_I

Value range NAMUR

	Normally closed	Normally open
Switching value reached	≤1 mA	> 3mA
Switching value not reached	> 3mA	≤1 mA

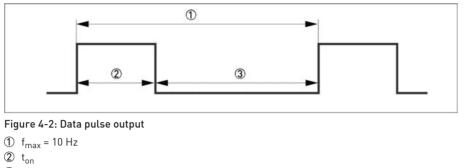
Range of values applies only when connected to a switching amplifier with the following reference values:

- Open-circuit voltage Uo = 8,2 V DC
- Internal resistance Ri = 1k0hm

Range of values transistor output

Signal voltages	U _L [V]		U _H	[V]
	lower Limit	upper Limit	lower Limit	upper Limit
over load R _L	0	2	16	30

Signal currents	I _L [mA]		I _L [mA] I _H [mA]	
	lower Limit	upper Limit	lower Limit	upper Limit
Category 2	0	2	20	110

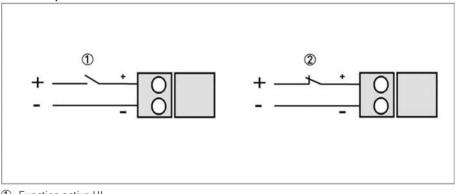

To safeguard the range of values, a load RL between 250 Ohm and 1kOhm is recommended for the passive transistor output with a nominal voltage of 24V DC.

If other loads are used, caution is advised as the range of values of the signal voltages then no longer corresponds to the range of values for the inputs of process control systems and controls (DIN IEC 946).

The upper limit of the signal current may not be exceeded as this may damage the transistor output.

Pulse output mode

The binary outputs can also be operated as pulse outputs.


3 t_{off}

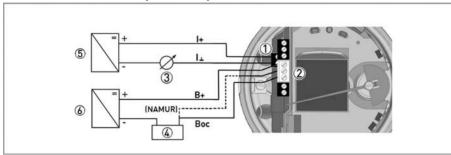
The pulse width $\rm t_{on}$ can be configured from 50...500 ms in the indicator menu.

Connection binary input

The binary input can be used to control the internal flow counter (start/stop/reset).

Function active HI
 Function active L0

As standard, the binary input is inactive and can be activated in menu point 3.6.


Range of values

Input voltage	U _L [V]] U _H [V]	
	lower Limit	upper Limit	lower Limit	upper Limit
Terminal (7) (8)	0	2	16	30

4.2.4 ESK4-T pulse output

When switching output B2 is used as a pulse output, two separate signal circuits are required. Each signal circuit requires its own power supply. The total resistance ④ must be adapted so that the total current I_{tot} does not exceed 100 mA.

Electrical connection pulse output

① Terminal power supply - current output

② Terminal B2

③ Flow rate measurement 4...20 mA

④ Pulse output load e.g. counter

- (5) Power supply ESK4
- 6 Pulse output power supply

Pulse output B2 is a passive "open collector" output which is electrically isolated from the current output and output B1. It can be operated as a low-resistance output or as a NAMUR output.

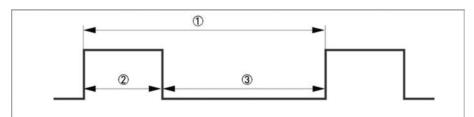
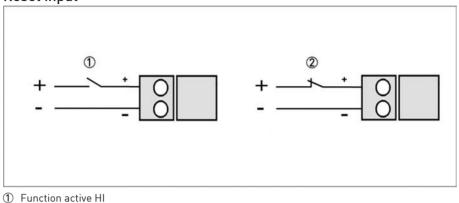


Figure 4-3: Data pulse output

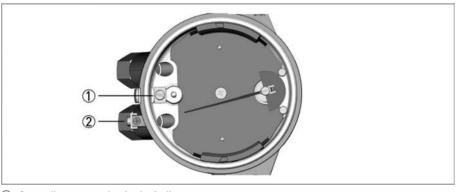
① $f_{max} = 10 \text{ Hz}$


2 t_{on}
 3 t_{off}

The pulse width t_{on} can be configured from 30...500 ms in the menu of the indicator.

4.2.5 ESK4-T Reset input

Input R can be used as a reset input or start / stop for the internal counter.



2 Function active L0

This reset input can be activated in the menu of the indicator and can be configured to ACTIVE HI or ACTIVE LO.

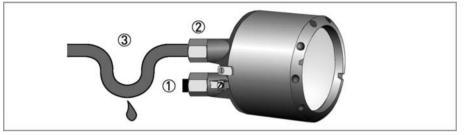
If the input is set as ACTIVE LO, an interruption causes the counter to be reset.

4.3 Grounding connections

1 Grounding connection in the indicator

② External grounding connection

The grounding wire may not transfer any interference voltage. Do not use this grounding cable to ground any other electrical devices.


4.4 Protection category

The measuring device meets all requirements of protection category IP66/68.

After all servicing and maintenance work on the measuring device, the specified protection class must be ensured again.

Therefore it is essential to observe the following points:

- Use only original gaskets. They must be clean and free of any damage. Defective gaskets must be replaced.
- The electrical cables used must be undamaged and must comply with regulations.
- The cables must be laid with a loop ③ upstream of the measuring device to prevent water from getting into the housing.
- The cable feedthroughs ② must be tightened.
- Close the unused cable feedthroughs using blanking plugs ①.

1 Use blanking plugs if no cable is routed through

- ② Tighten cable feedthrough firmly
- 3 Lay the cable in a loop

You can help us to assist you as quickly as possible by giving us a few items of information.

Then please fax this page to the appropriate sales associate. We will then contact you as soon as possible.

Device data

Connection type:				
Nominal connection size:				
Pressure rating:				
Raised face:				
Material of pipeline:				
Indicator options:	□ K1 ① □ K2 ② □ ESK4 □ ESK4-T □ ESK4-FF* □ ESK4-PA*			
Approvals* :	□ None	🗆 ATEX / IEC-Ex	🗆 FM / FMc	□ NEPSI

① 1 limit switch

(2) 2 limit switches

* in preparation

Rating data

Product:		
Operating pressure:	□ Absolute pressure	□ Overpressure
Rated pressure:		
Operating temperature:		
Rated temperature:		
Density:	□ Standard density	□ Operating density
Viscosity:		
Measuring range:		
Comments:		

Contact data

Company:	
Contact person:	
Telephone number:	
Fax number:	
E-mail:	

KROHNE product overview

- Electromagnetic flowmeters
- Variable area flowmeters
- Ultrasonic flowmeters
- Mass flowmeters
- Vortex flowmeters
- Flow controllers
- Level meters
- Temperature meters
- Pressure meters
- Analysis products
- Products and systems for the oil & gas industry
- Measuring systems for the marine industry

Head Office KROHNE Messtechnik GmbH Ludwig-Krohne-Str. 5 47058 Duisburg (Germany) Tel.:+49 (0)203 301 0 Fax:+49 (0)203 301 10389 info@krohne.de

The current list of all KROHNE contacts and addresses can be found at: www.krohne.com

